Highly Soluble Porphyrin（TPP）－Perylene Diimide（PDI）Dyad and Triad：Synthesis and Spectroscopic Studies

WANG，Chengyun＊（王成云）TANG，Wei（汤伟）ZHONG，Hanbin（钟汉斌）
ZHANG，Xuechao（张学超）SHEN，Yongjia（沈永嘉）
Key Laboratory for Advanced Materials and Institute of Fine Chemicals，East China University of Science and Technology，Shanghai 200237，China

Abstract

Novel porphyrin－perylene diimide dyad（TPP－PDI）and porphyrin－perylene diimide－porphyrin triad （TPP－PDI－TPP）were synthesized and characterized．Their structure and properties were studied by UV，FL，${ }^{1} \mathrm{H}$ NMR，MS，elemental analysis，etc．The variation of fluorescence feature and UV spectra of TPP－PDI－TPP triad were investigated at different concentration of $\mathrm{CF}_{3} \mathrm{COOH}$ in THF．The incorporation of $\mathrm{CF}_{3} \mathrm{COOH}$ leads to the closure of the efficient charge transfer decay．After protonation of porphyrin units，the fluorescence intensity of TPP－PDI－TPP triad increased greatly．The fluorescence intensity of TPP－PDI－TPP triad restored after addition of triethylamine into the solution．Thus，TPP－PDI－TPP triad was a proton－type fluorescence switch based on acid－base control．Moreover，different from porphyrin－perylene type molecular switches reported before，this TPP－PDI－TPP triad has wonderful solubility in organic solvents．

Keywords porphyrin，perylene diimide，protonation，fluorescence switch

Introduction

Perylene diimide（PDI）compounds ${ }^{1-7}$ have been ex－ tensively investigated in donor－acceptor supramolecular systems because of their optical，redox and stability properties．On the other hand，porphyrins are well known as optoelectronic and biological materials be－ cause of their excellent photochemical and electronical properties．${ }^{8-11}$ In the past few years，porphyrin－PDI do－ nor－acceptor systems ${ }^{12-22}$ attracted much attention in the fields of photosynthetic research and molecular photo／electro－active devices．Wasielewski and cowork－ ers have reported an efficient synthetic route to prepare perylene－porphyrin array．${ }^{12-14}$ However，the solubility of the expected array was very low because of the poor solubility of perylene unit．Here，we will introduce a donor－acceptor dyad and a donor－acceptor－donor triad consisting of porphyrin and PDI unit．The PDI unit in both compounds was modified by tert－butylphenoxy to increase their solubility．The mono－nitrified porphyrin was often prepared by condensing benzaldehyde， p－nitrobenzaldehyde and pyrrole，and the yield of this reaction was very low because there were six products which were difficult to separate．We modified the route to obtain mono－nitrified porphyrin through direct nitra－ tion of tetraphenylporphyrin with a yield of 70% ．The fluorescence behavior of the TPP－PDI－TPP triad modu－ lated by $\mathrm{CF}_{3} \mathrm{COOH}$ and triethylamine was also dis－
cussed．

Experimental

Instruments and materials

${ }^{1} \mathrm{H}$ NMR spectra were obtained on BRUKER 500 spectrometer．Mass spectra were recorded using LCQ ADVANTAGE mass spectrometer．Elemental analyses were performed on Elementar Vario EL III C，H，N analyzer．Absorption spectra were measured with CARY 100 Conc UV－vis spectrophotometer．Fluorescence spectra were carried out with a CARY Eclipse Fluores－ cence spectrophotometer in a 1 cm quartz cell．All re－ agents were purchased from commercial sources and were distilled or dried when necessary using the stan－ dard procedures．

Synthesis

The synthetic route is shown in Scheme 1.
5－（4－aminophenyl）－10，15，20－triphenylpor－ phyrin（3）（ $\mathbf{N H}_{\mathbf{2}} \mathbf{T P P}$ ）Compound $\mathbf{3}$ were synthesized according to the literature．${ }^{23}$ Yield：1， $40 \% ; \mathbf{2}, 70 \% ; \mathbf{3}$ ， 81% ．3：${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta: 8.93(\mathrm{~d}, J=4.5$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}_{\text {pyrrole }}$ ）， $8.80-8.82$（ $\mathrm{m}, 6 \mathrm{H}, \mathrm{H}_{\text {pyrrole }}$ ）， 8.21 （d， $J=6.5 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}$ ）， $7.97\left(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}\right)$ ， $7.73-7.75\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}\right), 6.95\left(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}\right)$ ， $3.93\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right),-2.75(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH})$ ．

[^0]Scheme 1 Synthetic route of TPP-PDI and TPP-PDI-TPP

Reagents and conditions: (a) $65 \% \mathrm{HNO}_{3}, \mathrm{CHCl}_{3}$; (b) $\mathrm{SnCl}_{2}, \mathrm{HCl}, \mathrm{N}_{2}$; (c) KOH , isopropanol, N_{2}; (d) imidazole, reflux in m-cresol for 24 h , yield 82%; (e) imidazole, reflux in m-cresol for 32 h , yield 74%.
N-butyl-1,6,7,12-tetra(4-tert-butylphenoxy)-perylene-3,4-anhydride-9,10-tetracarboxylic imide (5) and $1,6,7,12$-tetra(4-tert-butylphenoxy)-perylene-3,4,9,10-tetracarboxylic bisanhydride (6) Compound 5 and 6 were synthesized according to the literature. ${ }^{24}$ Yield: 5, 65\%; 6, 72\%. 5: ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.26(\mathrm{~d}, J=2.47 \mathrm{~Hz}, 4 \mathrm{H}), 7.22(\mathrm{~d}, J=$ $8.32 \mathrm{~Hz}, 8 \mathrm{H}), 6.83(\mathrm{~d}, J=7.34 \mathrm{~Hz}, 8 \mathrm{H}), 4.10(\mathrm{t}, J=7.53$, $7.51 \mathrm{~Hz}, 2 \mathrm{H}), 1.64-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.36(\mathrm{~m}, 2 \mathrm{H})$, $1.29(\mathrm{~s}, 36 \mathrm{H}), 0.84(\mathrm{t}, J=6.68,7.09 \mathrm{~Hz}, 3 \mathrm{H}) .6:{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta: 8.28$ (s, 4H, $\mathrm{H}_{\text {per }}$), 7.25 (d, $\left.J=8.4 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}\right), 6.85\left(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}\right), 1.3(\mathrm{~s}$, $\left.36 \mathrm{H}, 4-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$.

Porphyrin-perylene diimide dyad 7 (TPP-PDI) TPP-PDI dyad 7 was synthesized by the reaction of amino porphyrin 3 and compound 5. Amino porphyrin 3 (650 mg 1.0 mmol), compound $5(1.0 \mathrm{~g}, 1.0 \mathrm{mmol}$) and imidazole were added to 30 mL of m-cresol. The reaction mixture was heated to $170-175{ }^{\circ} \mathrm{C}$ under purified argon for 24 h with stirring. After the reaction mixture was cooled to room temperature, it was evaporated in vacuo to remove excess m-cresol. The residue was washed by methanol and filtered by silica gel. Then the residue was washed by hot $1 \% \mathrm{NaOH}$ solution and hot water three times respectively. After drying, the residue was purified by chromatography on silica gel using a mixture of dichloromethane-petroleum ether $(V / V, 2: 1)$ as eluent, to give a purple solid 71.31 g , yield 82%. m.p. $>300{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ $\delta: 8.85$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\text {pyrrole }}$), $8.60-6.64(\mathrm{~m}, 6 \mathrm{H}$, $\mathrm{H}_{\text {pyrrole }}$), 8.29-8.34 (m, 4H, $\mathrm{H}_{\text {per }}+\mathrm{H}_{\text {ar }}$), 8.12-8.18 (m, $\left.8 \mathrm{H}, \mathrm{H}_{\mathrm{per}}+\mathrm{H}_{\mathrm{ar}}\right), 7.88-7.92\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}\right), 7.58(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}$), $7.20-7.24\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}\right), 6.84-6.86$ (m, $8 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}$), $4.08\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{S}-\mathrm{CH}_{2}\right), 1.34-1.36\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right)$, 1.21 (s, $36 \mathrm{H}, \mathrm{CH}_{3}$), $0.88-0.90\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{3}\right),-2.85$ ($2 \mathrm{H}, \mathrm{NH}$); MS (ESI) $m / z: 1652.8[\mathrm{M}]^{+}$(calcd for $\mathrm{C}_{112} \mathrm{H}_{94} \mathrm{~N}_{6} \mathrm{O}_{8}$ 1652.0). Anal. calcd for $\mathrm{C}_{112} \mathrm{H}_{94} \mathrm{~N}_{6} \mathrm{O}_{8}$: C 81.43, H 5.74, N 5.09; found C 81.35, H 5.78, N 5.12.

Porphyrin-perylene diimide-porphyrin triad 8 (TPP-PDI-PDI) TPP-PDI-TPP triad $\mathbf{8}$ was synthesized by the reaction of $\mathrm{NH}_{2} \mathrm{TPP} 3(1.0 \mathrm{~g}, 16 \mathrm{mmol})$ and compound 6 ($807 \mathrm{mg}, 8.13 \mathrm{mmol}$) with imidazole in m-cresol (30 mL) according to the above working procedure. Compound $\mathbf{8}(1.33 \mathrm{~g})$ was obtained in a yield of 74% with a byproduct porphyrin-perylene dyad in a yield of 5%. m.p. $>300{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ $\delta: 8.85$ (d, $\left.J=4.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}_{\text {pyrrole }}\right), 8.72-8.79(\mathrm{~m}, 12 \mathrm{H}$, $\mathrm{H}_{\text {pyrrole }}$), $8.32\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{H}_{\text {per }}\right), 8.22\left(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}\right)$, $8.09-8.15\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}\right), 7.65-7.71\left(\mathrm{~m}, 18 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}\right)$, 7.57 (d, $J=8.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}$), $7.20(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 8 \mathrm{H}$, $\left.\mathrm{H}_{\mathrm{ar}}\right), 6.90\left(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{H}_{\mathrm{ar}}\right), 1.25\left(\mathrm{~s}, 36 \mathrm{H}, \mathrm{CH}_{3}\right)$, -2.85 (4H, NH); MS (MALDI-TOF) $\mathrm{m} / \mathrm{z}: 2206.9$ [M] ${ }^{+}$ (calcd for $\mathrm{C}_{152} \mathrm{H}_{114} \mathrm{~N}_{10} \mathrm{O}_{8}$ 2206.8). Anal. calcd for $\mathrm{C}_{152} \mathrm{H}_{114} \mathrm{~N}_{10} \mathrm{O}_{8}$: C 82.66, H 5.20, N 6.34; found C 82.71, H 5.18, N 6.38 .

Results and discussion

UV absorption and fluorescent behavior

The UV-vis sepectra of TPP-PDI 7 and

TPP-PDI-TPP 8 measured in THF $\left(1.0 \times 10^{-5} \mathrm{~mol} \cdot \mathrm{~L}^{-1}\right)$ were presented in Figure 1. For comparison, the UV-vis spectra of model TPP 1, and PDI 4 were also given. Their sepectral data are listed in Table 1.

Figure 1 UV-vis absorption spectra of compounds 1, 4, 7 and $\mathbf{8}$ $\left(1.0 \times 10^{-5} \mathrm{~mol} \cdot \mathrm{~L}^{-1}\right.$ in THF).

The UV-vis spectra of $\mathbf{7}$ and $\mathbf{8}$ were almost the summation of UV-vis spectra of porphyrin chromophore and perylene diimide chromophore. Compounds $\mathbf{7}$ and $\mathbf{8}$ all showed intense absorption at about 418 nm which is the Soret band of porphyrin. The sharp Soret band was coincident with compound 1 and the Q-band of porphyrin overlaps with the first absorption band of perylene diimide in the region of $500-600 \mathrm{~nm}$, this led to two absorption maxima at 516 and 571 nm . Since the perylene diimide moiety and porphyrin moiety in dyad 7 and triad 8 showed their individual characteristic absorption, it indicated that neither intramolecular nor intermolecular interaction took place between each electroactive moieties in the ground state.

Table 1 The UV-vis absorption data of compounds 1, 4, 7 and $\mathbf{8}$

Compound	Absorption $\lambda / \mathrm{nm} \varepsilon \times 10^{5} /\left({\left.\mathrm{L} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~cm}^{-1}\right)}_{\substack{\mathbf{1}}}^{\mathbf{4}} \quad 418(2.94), 515(0.23), 549(0.10), 589(0.07)\right.$
$\mathbf{7}$	$417(2.21), 537(0.34), 576(0.56)$
$\mathbf{8}$	$415(2.94), 516(0.28), 570(0.36)$

Figure 2 showed the fluorescence spectra of $\mathbf{1 , 4 , 7}$ and $\mathbf{8}$ in THF. Compared to compounds $\mathbf{1}$ and 4, dyad 7 and triad 8 showed a rather weak fluorescence. The maximum fluorescence intensity of TPP-PDI-TPP 8 which has porphyrin unit at both terminal of perylene diimide is much lower than TPP-PDI 7. Thus, we chose TPP-PDI-TPP 8 to study its fluorescence switch performance.

UV-vis spectra (TPP-PDI-TPP triad) after addition of $\mathrm{CF}_{3} \mathbf{C O O H}$

The UV-vis absorption of $\mathbf{8}$ and those after addition of different amounts of $\mathrm{CF}_{3} \mathrm{COOH}$ are showed in Figure 3. After $\mathrm{CF}_{3} \mathrm{COOH}$ was added, the absorption

Figure 2 Fluorescence spectra of 1, 4, 7, $8\left(\mathbf{4} 5.0 \times 10^{-7} \mathrm{~mol} \cdot\right.$ L^{-1}, others $\left.1.0 \times 10^{-5} \mathrm{~mol} \cdot \mathrm{~L}^{-1}, \lambda_{\mathrm{ex}}=419 \mathrm{~nm}, \mathrm{THF}\right)$.
band at 418, 516 and 571 nm decreased due to the protonation of porphyrin unit. The protonated porphyrin showed its new band at 441 and 655 nm . The spectra of 8 with $8.0 \times 10^{-1} \mathrm{~mol} \cdot \mathrm{~L}^{-1} \mathrm{CF}_{3} \mathrm{COOH}$ showed that the Soret band of porphyrin at 418 nm was totally disappeared and the band between $500-600 \mathrm{~nm}$ was red-shifted. In contrast, the absorption of perylene diimide unit kept almost unchanged after addition of $\mathrm{CF}_{3} \mathrm{COOH}$.

Figure 3 UV-vis absorption spectra of $\mathbf{8}$ in the presence of different amount of $\mathrm{CF}_{3} \mathrm{COOH}\left(1.0 \times 10^{-5} \mathrm{~mol} \cdot \mathrm{~L}^{-1}\right.$ in THF $)$.

Fluorescence spectrum (TPP-PDI-TPP) after addition of $\mathrm{CF}_{3} \mathbf{C O O H}$

Figure 4 showed the fluorescence spectra of $\mathbf{8}$ in different concentration of $\mathrm{CF}_{3} \mathrm{COOH}$ solution and further deprotonation by triethylamine. The fluorescence intensity began to increase when the concentration of $\mathrm{CF}_{3} \mathrm{COOH}$ was larger than $10^{-2} \mathrm{~mol} \cdot \mathrm{~L}^{-1}$. New fluorescence emission peak was produced by protonated prophyrin at 691 nm . The maximum fluorescence intensity increased about 34 times after $8.0 \times 10^{-1} \mathrm{~mol} \cdot \mathrm{~L}^{-1}$ $\mathrm{CF}_{3} \mathrm{COOH}$ was added. Obviously, the introduction of $\mathrm{CF}_{3} \mathrm{COOH}$ interrupted the efficient charger transfer between porphyrin and perylene diimide unit at excited state. After react with excess triethylamine to the former
protonated solution, the fluorescence spectrum of compound 8 restored as expected. This indicated that the fluorescence of compound $\mathbf{8}$ could be modulated by reversible protonation and deprotonation of its porphyrin unit. Thus, TPP-PDI-TPP 8 was a fluorescence switch based on acid-base method.

Figure 4 Fluorescence spectra of $\mathbf{8}$ in the presence of different amounts of $\mathrm{CF}_{3} \mathrm{COOH}$ and further addition of triethylamine $\left(1.0 \times 10^{-5} \mathrm{~mol}^{-\mathrm{L}^{-1}}\right.$ in THF, $\left.\lambda_{\mathrm{ex}}=419 \mathrm{~nm}\right)$.

Conclusion

We have synthesized novel TPP-PDI dyad 7 and TPP-PDI-TPP triad 8 which have wonderful solubility in organic solvents compared with former reported por-phyrin-perylene diimide type fluorescence switches. The fluorescence of triad $\mathbf{8}$ quenched at a much larger extent compared with dyad 7. What's more, its fluorescent behavior could be reversibly modulated by protonation and deprotonation of its porphyrin unit.

References

1 Gómez, R.; Coya, C.; Segura, J. L. Tetrahedron Lett. 2008, 49, 3225.
2 Kohl, C.; Weil, T. J.; Qu, J. Q.; Müllen, K. Chem. Eur. J. 2004, 10, 5297.
3 Leroy-Lhez, S.; Perrin, L.; Baffreau, J.; Hudhomme, P. C. R. Chimie 2006, 9, 240.
4 Zheng, X. P.; Zhang, D. Q.; Zhu, D. B. Tetrahedron Lett. 2006, 47, 9083.
5 Guo, X. F.; Zhang, D. Q.; Zhang, H. J.; Fan, Q. H.; Xu, W.; Ai, X. C.; Fan, L. Z.; Zhu, D. B. Tetrahedron 2003, 59, 4843.

6 Bouquin, N.; Malinvskii, V. L.; Haner, R. Chem. Commun. 2008, 1974.
7 Qvortrup, K.; Bond, A. D.; Nielsen, A.; Mckenzie, C. J.; Kilsa, K.; Nielsen, M. R. Chem. Commun. 2008, 1986.
8 Guo, X.-M.; Shi, Y.-H.; Zhang, Y.-H.; Yu, L.-X.; Shi, T.-S. Chin. J. Org. Chem. 2006, 26, 247 (in Chinese).
9 Liu, M. O.; Tai, C. H.; Chen, C. W.; Chang, W. C.; Hu, A. T. J. Photochem. Photobiol. A 2004, 163, 259.

10 Zhou, Z. C.; He, L.; Zhu, Y. Z.; Zheng, J. Y. Chin. J. Chem. 2007, 25, 1632.

11 Sun, Y.; Chen, Y. H.; Li, Y. Z.; Li, Y. Q.; Ma, F. C. Chin. J. Chem. 2008, 26, 1011.
12 O'neil, M. P.; Niemezyk, M. P.; Svec, W. A.; Gosztola, D.; Gaines III, G. L.; Wasielewski, M. R. Science 1992, 257, 63.
13 Debreczeny, M. P.; Svec, W. A.; Wasielewski, M. R. Science 1996, 274, 584.
14 Gosztola, D.; Niemczyk, M. P.; Wasielewski, M. R. J. Am. Chem. Soc. 1998, 120, 5118.
15 Yang, S. I.; Lammi, R. K.; Prathapan, S.; Miller, M. A.; Seth, J.; Diers, J. R.; Lindsey, J. S.; Holten, D. J. Mater. Chem. 2001, 11, 2420.
16 Sun, J.-Z.; Yang, X.-G.; Li, H.-Y.; Huang, J.; Wang, M. Chem. J. Chin. Univ. 2004, 25, 2148 (in Chinese).
17 Scandola, F.; Chiorboli, C.; Prodi, A.; Iengo, E.; Alessio, E.;

Coord. Chem. Rev. 2006, 250, 1471.
18 Li, Y.; Cao, L. F.; Tian, H. J. Org. Chem. 2006, 71, 8279.
19 You, C. C.; Wûrthner, F. Org. Lett. 2004, 6, 2401.
20 Boom, T.; Hayes, R. T.; Zhao, Y. Y.; Bushard, P. J.; Weiss, E. A.; Wasielewski, M. R. J. Am. Chem. Soc. 2002, 124, 9582.

21 Xiao, X. W.; Xu, W.; Zhu, D. B. J. Mater. Chem. 2005, 15, 2557.

22 Li, X. Y.; Sinks, L. E.; Rybtchinski, B.; Wasielewski, M. R. J. Am. Chem. Soc. 2004, 126, 10810.

23 Kruper, W. J.; Chamberlin, T. A.; Kochanny, M. J. Org. Chem. 1989, 54, 2753.
24 Li, Y. J.; Wang, N.; Gan, H. Y.; Liu, H. B.; Li, H.; Li, Y. L.; He, X. R.; Huang, C. S.; Cui, S.; Wang, S.; Zhu, D. B. J. Org. Chem. 2005, 70, 9686.

[^0]: ＊E－mail：cywang＠ecust．edu．cn；Tel．：0086－021－64252967；Fax：0086－021－64252967
 Received March 5，2009；revised May 18，2009；accepted June 19， 2009.
 Project supported by the National Natural Science Foundation of China（Nos．20872035，20676036），Specialized Research Fund for the Doctoral Program of Higher Education（No．20070251018）and the foundation of East China University of Science \＆Technology（No．YJ0142130）．

